|
光纤通信名词术语 光纤通信:是指将要传送的语音、图像和数据信号等调制在光载波上,以光纤作为传输媒介的通信方式 1、本征损耗: 是光纤的固有损耗,包括:瑞利散射,固有吸收等。 2、弯曲: 光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。 3、挤压: 光纤受到挤压时产生微小的弯曲而造成的损耗。 4、杂质: 光纤内杂质吸收和散射在光纤中传播的光,造成的损失。 5、不均匀: 光纤材料的折射率不均匀造成的损耗。 6、对接: 光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。 7、多模光纤:中心玻璃芯教粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。 8、单模光纤:中心玻璃芯教细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模 光纤对光源的谱宽和稳定性有较高的要求, 即谱宽要窄,稳定性要好。 9、常规型光纤:光纤生产长家将光纤传输频率最佳化在单一波长的光上,如1300μm。 10、色散位移型光纤:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300μm和1550μm。 11、突变型光纤:光纤中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。 12、渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。 13、电发射端机 14、抽样是指从原始的时间和幅度连续的模拟信号中离散地抽取一部分样值,变换成时间和幅度都是离散的数字信号的过程。 15、编码是指按照一定的规则将抽样所得的M种信号用一组二进制或者其它进制的数来表示,每种信号都可以由N个2二进制数来表示,M和N满足M=2N。例如如果量化后的幅值有8种,则编码时每个幅值都需要用3个二进制的序列来表示。 16、时分多路复用:当信道达到的数据传输率大于各路信号的数据传输率总和时,可以将使用信道的时间分成一个个的时间片(时隙),按一定规则将这些时间片分配给各路信号,每一路信号只能在自己的时间片内独占信道进行传输,所以信号之间不会互相干扰。 17、频分多路复用:当信道带宽大于各路信号的总带宽时,可以将信道分割成若干个子信道,每个子信道用来传输一路信号。或者说是将频率划分成不同的频率段,不同路的信号在不同的频段内传送,各个频段之间不会相互影响,所以不同路的信号可以同时传送。这就是频分多路复用(FDM)。 18、码分多址(CDMA):这种技术多用于移动通信,不同的移动台(或手机)可以使用同一个频率,但是每个移动台(或手机)都被分配带有一个独特的“码序列”,该序列码与所有别的“码序列”都不相同,所以各个用户相互之间也没有干扰。因为是靠不同的“码序列”来区分不同的移动台(或手机),所以叫做“码分多址”(CDMA)技术。 19、空分多址(SDMA):这种技术是利用空间分割构成不同的信道。举例来说,在一颗卫星上使用多个天线,各个天线的波束射向地球表面的不同区域。地面上不同地区的地球站,它们在同一时间、即使使用相同的频率进行工作,它们之间也不会形成干扰。 空分多址(SDMA)是一种信道增容的方式,可以实现频率的重复使用,充分利用频率资源。空分多址还可以和其它多址方式相互兼容,从而实现组合的多址技术,例如空分·码分多址(SD-CDMA)。
21、调制方式:模拟通信可采用调幅、调频、调相等多种调制方式,采用数字调制时,相应地称为幅移键控(ASK)、频移键控(FSK)、相移键控(PSK);信号只有两种状态的ASK称为通断键控(OOK),当前的数字通信系统使用OOK-PCM格式,属于强度调制-直接检测(IM-DD)通信方式,是通信方式中最简单、最初级的方式。而相干通信系统则可使用ASK、FSK或PSK-PCM格式,是复杂、高级的通信方式 22、光接收机灵敏度定义为:在保证达到所要求的误比特率的条件下,接收机所需要的最小输入光功率。 22、光耦合是对同一波长的光功率进行分路或合路。通过光耦合器,我们可以将两路光信号合成到一路上 23、光隔离器是一种只允许单向光通过的无源光器件,其工作原理是基于法拉第旋转的非互易性。 24、磁光隔离器也可以说是单向导光器,隔离器放置于激光器及光放大器前面,防止系统中的反射光对器件性能的影响甚至损伤。 25、光滤波器是用来进行波长选择的仪器,它可以从众多的波长中挑选出所需的波长,而除此波长以外的光将会被拒绝通过。它可以用于波长选择、光放大器的噪声滤除、增益均衡、光复用/解复用。 26.基于光栅原理的滤波器:体光栅滤波器、阵列波导光栅滤波器(AWG)、光纤光栅滤波器、声光可调谐滤波器。26、光纤连接器是一种用于连接光纤的器件。它在光纤通信系统和测量仪表中具有不可或缺的地位。它不同于光纤固定接头,可以拆卸,使用灵活,所以由又称为光纤活动连接器或者光纤活动接头。一般的,要求光纤连接器体积小、接入损耗小、可重复拆卸、可靠性高、寿命长、价格便宜等。 27、光衰减器是用于对光功率进行衰减的器件,它主要用于光纤系统的指标测量、短距离通信系统的信号衰减以及系统试验等场合。光衰减器要求重量轻、体积小、精度高、稳定性好、使用方便等。它可以分为固定式、分级可变式、连续可调式几种。 28、光放大是指在泵浦能量(电或光)的作用下,实现粒子数反转(非线性光纤放大器除外),然后通过受激辐射实现对入射光的放大。 29、MDF Main Distribution Frame,主配线架。 30、IDF Intermediate Distribution Frame,分配线架。 31、OC OC(Optical Carrier,光载波)是SONET规范中定义的传输速度。OC定义光设备的传输速度,STS定义电气设备的传输速度。 32、SC Subscriber Connector(Optical Fiber Connector) 用户连接器(光纤连接器)。 33、ST Straight Tip,直通式光纤连接器。 34、SONET SONET(Synchronous Optical NETwork,光纤同步网络)是一种用于高速数据通信的光纤传输系统。SONET被电话公司和公用通信公司部署,其速度从51Mb/s直到每秒几千兆。SONET是一种提供先进网络管理和标准光纤接口的智能系统。它采用自恢复环结构,如果一条线路发生故障,它能够改道传送。SONET干线广泛用于汇集低速T1和T3线路。SONET是宽带ISDN(B-ISDN)标准规定的。欧洲相应的标准是SDH。SONET采用时分复用(TDM)技术同时传送多数据流。 35、 光缆终端盒 光缆终端盒主要用于光缆终端的固定,光缆与尾纤的熔接及余纤的收容和保护。 36、 光纤盒 光纤盒应用于利用光纤技术传输数字和类似语音,视频和数据信号。光纤盒可进行直接安装或桌面安装。特别适合进行高速的光纤传输。 37、 光纤面板 光学纤维面板具有传光效率高,级间耦合损失小,传像清晰、真实,在光学上具有零厚度等特点。最典型的应用是作为微光像增强器的光学输入、输出窗口,对提高成像器件的品质起着重要作用。广泛的应用于各种阴极射线管、摄像管、CCD耦合及其他需要传送图像的仪器和设备中。 38、 光纤耦合器 光纤耦合器(Coupler)又称分歧器(Splitter),是将光讯号从一条光纤中分至多条光纤中的元件,属於光被动元件领域,在电信网路、有线电视网路、用户回路系统、区域网路中都会应用到,与光纤连接器分列被动元件中使用最大项的。光纤耦合器可分标准耦合器(双分支,单位1×2,亦即将光讯号分成两个功率)、星状/树状耦合器、以及波长多工器(WDM,若波长属高密度分出,即波长间距窄,则属於DWDM),制作方式则有烧结(Fuse)、微光学式(Micro Optics)、光波导式(Wave Guide)三种,而以烧结式方法生产占多数(约有90%)。
40、 光纤配线箱 光纤配线箱特别适合于光纤接入网中的光纤终端点,具有光缆的配线和熔接功能,可以实现光缆纤芯的灵活调线及存储。 41、 跳线 跳线就是不带连接器的电缆线对或电缆单元,用在配线架上交接各种链路。 42、线头盒 线头盒主要适用于架空光缆、直埋光缆、管道井光缆的直通和分歧接头,并对接头起保护作用。44、 10BaseF 10Mbit/s基带以太网规范,指的是光纤电缆连接上的以太网10BaseFB,10BaseFl和 10BaseFL标准。 45、10BaseFB 指的是使用光纤电缆连接的10Mbit/s基带以太网规范。它是IEEE10BaseF规范的一部分。它不用于连接用户工作站。而是用于提供一个同步的信令骨干网,该网允许附加网段和中继器连接到网络上。10BaseFB的网段长度可达2km。 46、10BaseFL 指的是使用光纤电缆连接的10Mbit/s基带以太网规范。它是IEEE 10BaseL规范的一部分。尽管它可以与FOIRL进行互操作,但是制定它是为了取代FOIRL规范。如果和FOIRL一起使用,10BaseFL的网段长度可达1km;而如果仅仅使用10BaseFL,则10BaseFL的网段可达2km。 47、10BaseFP 指的是使用光纤电缆连接的10Mbit/s无源光纤基带以太网规范。它是IEEE10BaseF规范的一部分。它在不使用中继器的情况下将多个计算机组织成星形拓扑。10BaseFP的网段长度可达500m。 48、10BaseFX 指的是在每个链路中使用两股多模光纤电缆的100Mbit/s基带快捷以太网规范。为了保证合适的信号记时,一个100BaseFX链路不能超过400m长。它基于IEEE802.3标准。 49、4B/5B 光纤 指的是4字节/5字节的局部光纤。它是用于FDDI和ATM的光纤信道物理介质,它支持在多模光纤上高达100Mbit/s的速率。 50、8B/10B 光纤 8字节 /10字节的局部光纤。它指的是在多模光纤上支持高达149.76Mbit/s速率的光纤信道物理介质。 51、 FDDI II 第二代光纤分布式数据接口。改进的光纤分布式数据接口(FDDI)的美国国家标准协会 (ANSI)规范。它为无连接的数据电路和面向连接的声音和图像电路提供了同步传输。 52、FDDI/CDDI 由美国国家标准协会ANSI的X3T9.5制定。速率为100Mbps;CDDI是基于铜电缆(双绞线)的FDDI。FDDI技术成熟,网络可延伸100公里,且由于采用环形结构和优良的管理能力,具有高可靠性。价格贵,安装复杂,标准完善,技术成熟,支持的软硬件产品丰富。53、传播延迟 信号通过电缆或系统所用的时间。 54、传播延迟歪斜 电缆或系统中最慢与最快的线对之间的传输延迟差别。 55、 单模 一种光纤类型,光以单一路径通过这种光纤。以激光器为光源 56、多模 一种光纤类型,光以多重路径通过这种光纤。以发光二极管或激光器为光源。 57、光纤 光纤即光导纤维,是一种细小、柔韧并能传输光信号的介质,光缆由多条光纤组成。与双绞线和同轴电缆相比,光缆适应了目前网络对长距离传输大容量信息的要求,在计算机网络中发挥着十分重要的作用。 58、平面电缆 包括工作区接线口、分布电缆和电信柜里的连接硬件。 59、衰减 信号在通过光纤线缆或系统时所损失的数量 60、滑码 数字网内任何两个数字交换设备的时钟速率差超过一定数值时,会使接收信号交换机的缓冲存储器读、写时钟有速率差,当这个差值超过某一定值时就回产生滑码。这一滑码就会造成接收数字流的误码或失步 61、电信网(telecommunication network) 62、支撑网(supporting network) 63、信令网(signalling network) 64、同步网(synchronization network) 65、电信管理网(telecommunication management network) 66、电信业务网(telecommunication services network) 67、电视转播网(television transmission network) 68、综合业务数字网(ISDN)(integrated services digital network) 69、宽带综合业务数字网(B- ISDN)(broadband integrated services digital network) 70、本地网(local telephone network) 71、智能网(intelligent network) 72、虚拟专用网 (Virtual private network) 73、光纤的活动连接,又称为活接头。 74、固定连接即永久性连接, 75、永久性光纤连接(又叫热熔): 76、 应急连接(又叫)冷熔: 77、活动连接: 78、光纤配线架:用于室内光纤网络配线系统。 光纤活动连接器:用于各类光纤设备(如光端机等)与光纤之间的连接。 光纤适配器:用于各类光纤设备与光纤连接方式的转换。 光纤衰减器:用于对输入光功率的衰减,避免了由于输入光功率超强而使光接收机产生的失真。 光分路器:适用于将一根光纤信号分解为多路光信号输出 光波分复用器:用于光路中不同波长的光的分离或混合。 79、 光纤检测: 光纤检测的主要目的是保证系统连接的质量,减少故障因素以及故障时找出光纤的故障点。检测方法很多,主要分为人工简易测量和精密仪器测量。 A. 人工简易测量: 这种方法一般用于快速检测光纤的通断和施工时用来分辨所做的光纤。它是用一个简易光源从光纤的一端打入可见光,从另一端观察哪一根发光来实现。这种方法虽然简便,但它不能定量测量光纤的衰减和光纤的断点。 B. 精密仪器测量: 使用光功率计或光时域反射图示仪(OTDR)对光纤进行定量测量,可测出光纤的衰减和接头的衰减,甚至可测出光纤的断点位置。这种测量可用来定量分析光纤网络出现故障的原因和对光纤网络产品进行评价。 80、静态疲劳:材料的破坏与损伤大部分都从微细损伤现象开始,萌生出微小裂纹并可能扩展至断裂,为了防止这一破坏过程发生至危害状态,微细缺陷或者夹杂物以及由晶格变形引起的微米级缺陷的力学行为特别是瞬间状态下微细变化以及定量地检测,评价材料和器件的可靠性、高精度的寿命预测、疲劳裂纹尖端开口变化和裂纹速率间的关系、塑性变形与裂纹萌生间的关系等
81 802.1p 802.1p定义了优先级的概念,对于那些实时性要求很高的数据包,主机在发送时就在MAC祯头增加3位优先级中指明该数据包的优先级高,这样当交换机数据流量比较多时,就会转发这些优先级较高的数据802.1p协议还定义了 GARP GENERIC ATTRIBUT REGISTRATION PROTOCO指MAC地址端口过滤模式和VLAN属性,还定义了GMRP GERNERIC MULICAST REGIRATION PROTOL 它的很多方面与 IGMP 类似,而802.1p协议是根据MAC地址来在以太网交换机上注册和取消成员身份的。 82 802.1Q 由于各厂商都申明支持VLAN,但各厂商实现的方法各不相同,所以彼此无法相连,VLAN的标准IEEE802.1Q协议,只有支持相同开放标准才能保证设备的互连互通,802.1q规定了一种新的以太祯字段,与标准的以太祯相比,VLAN报文格式在源地址后增加了一个4字节的802.1q标签,包括两字节的标签协议标识 , 和两字节标签控制信息,对于交换机所连的端口,可以识别和发送802.1q报文,这种端口称为TAG AWARE 端口,一般情况下,两个交换机互连端口一般情况下都是TAG AWARE 端口。交换机与交换机之间交换数据包时是没有必要去掉标签。 83 802.1x 802.1x协议成为基于端口的纺问控制协议。 802.1x包括客户端,认证系统,认证服务器。 2:认证服务器 :通常为RADIUS服务器,该服务器可以存储有关用户的信息,比如用户所属的VLAN、CAR参数、优先级、用户的访问控制列表等等。当用户通过认证后,认证服务器会把用户的相关信息传递给认证系统,由认证系统构建动态的访问控制列表,用户的后续流量就将接受上述参数的监管。认证服务器和RADIUS服务器之间通过EAP协议进行通信。 值得注意的是,在IEEE 802.1x协议中的“可控端口”与“非可控端口”是逻辑上的理解,设备内部并不存在这样的物理开关。 3: 对于每个用户而言,IEEE 802.1x协议均为其建立一条逻辑的认证通道,该逻辑通道其他用户无法使用,不存在端口打开后被其他用户利用问题。 84 MAC地址表深度 地址表深度反映了交换机可以学习到的最大MAC地址数。故地址表深度越大,则交换机支持的站点数越大,对网络的适应能力越好,避免了因网络变化造成的地址表或转发表的动荡。 85PIM 协议 PIM DM和DVMRP相似,都使用相反路径flooding(reverse path flooding), 当PIM DM接收一个包时,它在它连接的所有路径上flood这个包,除了接收路径,如果某个网段没有任何组播组的成员,则路由器发送一个削减信息返回分布树, 协议独立意味着它不依赖任何一个指定的点播路由协议,这个原则适用于dense-mode和sparse-mode,PIM可以使用所有的点播路由协议,PIM适用于发送者和接收者的距离很近,也适用于很少的发送者和很多的接收者,以及流量很高的情况。 86 OTDR OTDR的工作原理就类似于一个雷达。它先对光纤发出一个信号,然后观察从某一点上返回来的是什么信息。这个过程会重复地进行,然后将这些结果进行平均并以轨迹的形式来显示,这个轨迹就描绘了在整段光纤内信号的强弱(或光纤的状态)。 OTDR测试是通过发射光脉冲到光纤内,然后在OTDR端口接收返回的信息来进行。当光脉冲在光纤内传输时,会由于光纤本身的性质、连接器、接合点、弯曲或其它类似的事件而产生散射、反射。其中一部分的散射和反射就会返回到OTDR中。返回的有用信息由OTDR的探测器来测量,它们就作为光纤内不同位置上的时间或曲线片断。 OTDR (Optical Time Domain Deftectometer ) 光时域反射仪。 作用: 1.测量光纤长度; 2. 测量光纤接头损耗;3. 测量测定光纤的断点或固障点;4. 测量光纤损耗。 OTDR参数说明: 1.折射率 N: 影响测度纤长的因素之一,N越大,所能测度纤长越短,反之N越小,所能测试纤长越长。 2.光脉冲宽度T: T越大,则所能测试纤长越长,但盲区会随之增大,清晰度也会下降。所以测试短距离用小脉宽档,测试长距离用大脉宽档。 3.波长 :若系统运营时采用1310NM波长,测试用1550NM波长,则所测损耗值偏小。所以应用合适的波长进行测试。 4.模式:线路为单模,而用多模光源来测量,则所测长度正确,但损耗值不对。 5.量程:若量程不合适,会不利于观测,还会出现二次反射峰,所以量程一般为光纤的3/2或2倍。 6.接续阈值:此值规定接续损耗的阈值,有损耗相等或大于此阈值损耗容限的接续则显示于屏幕上。建议采用 0.05DB适宜。 87 GBIC是Giga Bitrate Interface Converter的缩写,是将千兆位电信号转换为光信号的接口器件。GBIC设计上可以为热插拔使用。GBIC是一种符合国际标准的可互换产品。采用GBIC接口设计的千兆位交换机由于互换灵活,在市场上占有较大的市场分额。
88 ST接口:一般监控系统使用的光端机采用ST光接口,为圆头,卡口。 SC接口:用于传输网络信号的光收发器采用SC光接口,为方头,卡口。 FC接口:用于有线电视或电信网络的光发射机和接收机,为圆头,螺丝口。 光端机:用于传输不同路数的音视频和数据的成对使用设备,分模拟、数字光端机 模拟光端机:在光纤中传输的信号是模拟光信号,价格便宜,比较常用。 数字光端机:在光纤中传输的信号是数字光信好,价格较高,图像清晰,性能稳定。 光收发器:用于传输网络信号的设备,使用单纤/双纤。10M、100M和1000M带宽。 ST、SC、FC光纤接头是早期不同企业开发形成的标准,使用效果一样,各有优缺点。 ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。 MTRJ 型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室内应用。 以上连接器接头在“常用光器件图片”里可以看到。
89 光缆:光通信的主要传输介质,内部由光纤,加强钢丝,放水油膏和护套构成。根据距离有多模和单模两种分类,多模:一般适于短距离连接,距离小于5000米;单模:适于长距离连接,距离可以达到几十公里。 根据铺设方式的不同,一般分为:架空,管道和直埋等。 光缆护套:为了便于光缆铺设和运输,一般光缆出厂时,每轴可以卷2-3公里,在长距离铺设光缆时,需要将不同轴的光缆进行接续,接续时,两轴光缆时在光缆护套内进行融接接续的。 前端终端盒:为了保护光缆末端的融接点,一般把融接点保护在终端盒内,在前端使用。每对光端机配备1个前端终端盒。每个前端终端盒最多可接3台同址光端机。 中心终端箱:在中心使用的融接点保护箱,可以多根光缆共同使用。 法兰盘:光缆融接终端盒与外部的接口,每对光端机需要配备2个法兰盘。法兰盘分ST接口,SC接口和FC接口。 光纤跳线:,通过法兰盘留出的一个可以插的接口在外面,通过光纤跳线连接到光端机,光跳线损坏可以更换,但是融接部分的跳线损坏,需要重新融接,单独融接一个点比较麻烦。光纤方案中,一对光端机需要配3条跳线,跳线也分ST接口,SC接口和FC接口。 90 Volition VF-45插座和跳线 它像插入RJ-45一样容易, VolitionVF-45插座和跳线是光纤到桌面网络的最新双工光纤互连,VF-45插头和插座像8芯模块插座一样工作,给光纤应用带来和RJ-45接口一样的简便性。VF-45插座能被现场端接于电信间的配线板和楼宇水平布线,只需要不到1分钟,即可端接两芯光纤。 特点 * 插接式插座设计(不需适配器) 91 SFP(Small Form-factor Pluggables)可以简单的理解为GBIC的升级版本。SFP模块(体积比GBIC模块减少一半,可以在相同面板上配置多出一倍以上的端口数量。由于SFP模块在功能上与GBIC基本一致,因此,也被有些交换机厂商称为小型化GBIC(Mini-GBIC)。 当单一交换机所能够提供的端口数量不足以满足网络计算机的需求时,必须要有两个以上的交换机提供相应数量的端口,这也就要涉及到交换机之间连接的问题。从根本上来讲,交换机之间的连接不外乎两种方式,一是堆叠,一是级联。 (1)GBIC 级联使用的GBIC模块分为4种,一是1000Base-T GBIC模块,适用于超五类或六类双绞线,最长传输距离为100米;二是1000Base-SX GBIC模块,适用于多模多纤(MMF),最长传输距离为500米;三是1000Base-LX/LH GBIC模块,适用于单模光纤(SMF),最长传输距离为10千米;四是1000Base-ZX GBIC,适用于长波单模光纤,最长传输距离为70千米~100千米。
92 SDH PDH 传统的数字通信制式是异步(或称准同步)数字系列(PDH)。所谓异步是指各级比特率相对其标称值有一个规定容限的偏差,而且是不同源的。在数字通信发展初期,异步数字系列起到很大作用,使数字复用设备能先于数字交换设备得到开发。但在数字网技术迅速发展的今天,这种基于点对点的体制正暴露出一些固有的弱点。SDH的问世之所以被称为是通信传输体制上的重大变革,皆因其具有许多PDH所不及的优点。 1、SDH拥有全世界统一的网络节点接口(NNI),是真正的数字传输体制上的国际性标准。长期以来,世界各国数字通信设备基本上都采用准同步数字系列(PDH),但由于PCM基群复用设备所采用的编码律及复用路数不同,故形成了两种不同的地区性数字体制标准:一种是俄罗斯和欧洲系列(中国亦采用此系列),以2Mbit/s为基础;另一种是北美和日本系列,以1.5sMbit/s为基础。由于这两种系列具有不同的比特率,因此,各个国家的设备只有通过光/电转换变成标准电接口才能互通,在光路上则无法实现互相调配。由于两大系列难以兼容,限制了联网应用的灵活性,增加了网络运营成本,故给国际间互通联网带来了困难,而且向更高群次发展在技术上也有更大难度。由于SDH有一套开放的标准化光接口,因而使现有准同步两大数字系列得以兼容,可以很方便地在光路上实现不同厂家新产品的互通,使信号传输、复用和交换过程得到简化,从而降低联网成本。 2、SDH拥有一套标准化的信息结构等级,称为同步传送模块(STM),并采用步复用方式,使得利用软件就可以从高速复用信号中一次分出(插入)低速支路信号,不仅简化了上下话路的业务,也使交叉连接得以方便实现。通常,电端机是光纤数字通信系统的终端设备,它由基群和复接设备组成。如4个基群可以复接成一个二次群,4个二次群可以复接成一个三次群,4个三次群可复接成一个四次群,4个四次群可以复接成一个五次群。反之,1个五次群可以分解成4个四次群,1个四次群可以分解成4个三次群,等等。在传统的异步数字系列里,从高次群的信号中难以直接分出低次群的信号,必须采用逐级分接和复接的方法进行,即将整个高速率信号一步一步地分解到所需的低速信号等级,然后再一步一步地复用至高速信号。如:为了从四次群(140Mbit/s)高速码流中分出(插入)1个基群(2Mbit/s)支路信号,需要经过将四次分解成三次群、将三次群分解成二次群、将二次群分解成基群的三次分接和复接过程才能完成。而电信号的反复分接和复接,对全程全网的传输质量有明显的影响。在SDH光缆通信系统中,常规PDH系统的众多复用器和线路终端被综合在一个设备终端复用器(TM)中,省去了全套背靠背的复用设备。其支路接口可以是2Mbit/s、 34Mbit/s、 140Mbit/s和155Mbit/s的任意组合。因而利用软件系统就可以很方便地从干路高速码率复用信号中一次性地分出(插入)低速码流支路,避免了需要对全部信号按部就班地进行解(复)用的做法,不仅使上下业务十分容易,而且可靠性也大大提高。如果将线路沿途的再生中继器换成分插复用器,则在中途就可以任意分路和插入电路、速率也可以为2Mbit/s、34Mbit/s、 140Mbit/s和155Mbit/s的任意组合,从而使区间通信变得十分灵活方便。此外,利用SDH设备还可以对原有的光纤数字通信系统进行扩容。 3、SDH拥有丰富的开销比特(约占信号的5%),以用于网络的运行、维护和管理。 SDH具有自愈保护功能,可大大提高网络的通信质量和应付紧急的能力。SDH网结构有很强的适应性,现有的准同步数字体系、同步数字体系和宽带综合业务数字网(B-ISDN)均可进入其帧结构。 |
|手机版|搜索|焦点光学|光电工程师社区 ( 鄂ICP备17021725号-1 鄂网安备42011102000821号 )
Copyright 2015 光电工程师社区 版权所有 All Rights Reserved.
申明:本站为非盈利性公益个人网站,已关闭注册功能,本站所有内容均为网络收集整理,不代表本站立场。如您对某些内容有质疑或不快,请及时联系我们处理!
© 2001-2022 光电工程师社区 网站备案号:鄂ICP备17021725号 网站公安备案号:鄂42011102000821号 Powered by Discuz! X3.2
GMT+8, 2024-12-22 18:25