激光产生原理:
武汉科技大学激光加工中心 陈长军
激光英文全名为Light Amplification by Stimulated Emission of Radiation (LASER)。 于1960年面世,是一种因刺激产生辐射而强化的光。了解激光产生原理,我们必先了解物质的结构,与及光的辐射和吸收的原理。物质由原子组成。图一是一个碳原子的示意图。原子的中心是原子核,由质子和中子组成。质子带有正电荷,中子则不带电。原子的外围布满着带负电的电子,绕着 原子核运动。电子在原子中的能量并不是任意的。描述微观世界的量子力学告诉我们,这些电子会处于一些固定的能阶,不同的能阶对应于不同的电子能量。为了简单起见,我们可以如图一所示,把这些能阶想象成一些绕着原子核的轨道,距离原子核越远的轨道能量越高。此外,不同轨道最多可容纳的电子数目也不同,例如最低的轨道 (也是最近原子核的轨道) 最多只可容纳 2 个电子,较高的轨道则可容纳 8 个电子等等。事实上,这个过份简化了的模型并不是完全正确的,但它足以帮助我们说明激光的基本原理。
图一 碳原子示意图
图二 原子内电子的跃迁过程
电子可以透过吸收或释放能量从一个能阶跃迁至另一个能阶。例如当电子吸收了一个光子时,它便可能从一个较低的能阶跃迁至一个较高的能阶 (图二 a)。同样地,一个位于高能阶的电子也会透过发射一个光子而跃迁至较低的能阶 (图二 b)。在这些过程中,电子吸收或释放的光子能量总是与这两能阶的能量差相等。由于光子能量决定了光的波长,因此,吸收或释放的光具有固定的颜色。
当原子内所有电子处于可能的最低能阶时,整个原子的能量最低,我们称原子处于基态。图一显示了碳原子处于基态时电子的排列状况。当一个或多个电子处于较高的能阶时,我们称原子处于受激态。前面说过,电子可透过吸收或释放在能阶之间跃迁。跃迁又可分为三种形式﹕
1.自发吸收 - 电子透过吸收光子从低能阶跃迁到高能阶 (图二 a)。
2.自发辐射 - 电子自发地透过释放光子从高能阶跃迁到较低能阶 (图二 b)。
3.受激辐射 - 光子射入物质诱发电子从高能阶跃迁到低能阶,并释放光子。入射光子与释放的光子有相同的波长和相,此波长对应于两个能阶的能量差。一个光子诱发一个原子发射一个光子,最后就变成两个相同的光子 (图二 c)。
图三 红宝石激光的示意图
激光基本上就是由第三种跃迁机制所产生的。图三显示红宝石激光的原理。它由一支闪光灯,激光介质和两面镜所组成。激光介质是红宝石晶体,当中有微量的铬原子。在开始时,闪光灯发出的光射入激光介质,使激光介质中的铬原子受到激发,最外层的电子跃迁到受激态。此时,有些电子会透过释放光子,回到较低的能阶。而释放出的光子会被设于激光介质两端的镜子来回反射,诱发更多的电子进行受激辐射,使激光的强度增加。设在两端的其中一面镜子会把全部光子反射,另一面镜子则会把大部分光子反射,并让其余小部分光子穿过,而穿过镜子的光子就构成我们所见的激光。
产生激光还有一个巧妙之处,就是要实现所谓粒子数反转的状态。以红宝石激光为例 (图四),原子首先吸收能量,跃迁至受激态。原子处于受激态的时间非常短,大约10-8 秒后,它便会落到一个称为亚稳态的中间状态。原子停留在亚稳态的时间很长,大约是10-3秒 或更长的时间。电子长时间留在亚稳态,导致在亚稳态的原子数目多于在基态的原子数目,此现象称为粒子数反转。粒子数反转是产生激光的关键,因为它使透过受激辐射由亚稳态回到基态的原子,比透过自发吸收由基态跃迁至亚稳态的原子为多,从而保证了介质内的光子可以增多,以输出激光。
图四 粒子数反转的状态
激光透过受激辐射产生,有以下三大特性 (图五)﹕
1.激光是单色的,在整个产生的机制中,只会产生一种波长的光。这与普通的光不同,例如阳光和灯光都是由多种波长的光合成的,接近白光。
2.激光是相干的,所有光子都有相同的相,相同的偏振,它们迭加起来便产生很大的强度。而在日常生活中所见的光,它们的相和偏振是随机的,相对于激光,这些光就弱得多了。
3.激光的光束很狭窄,并且十分集中,所以有很强的威力。相反,灯光分散向各个方向转播,所以强度很低。
图五 普通灯光与激光的比较
以能量划分,激光可大致可分为三类,第一类是低能量激光,这类激光通常以气体为激光介质,例如在超级市场中常用的条形码扫描仪,就是用氦气和氖气作为激光介质的;第二类是中能量激光,例如在课堂上用的激光指示器;最后一类为高能量激光,一般用半导体作为激光介质,输出的功率可高达 500 MW。用于热核聚变实验的激光可发射出时间极短但能量极高的激光脉冲,其脉冲功率竟可达1014 W,这一激光可产生达一亿度的高温,引发微粒状的氘-氚燃料进行热核聚变。
激光加工技术:
激光是20世纪60年代的新光源。由于激光具有方向性好、亮度高、单色性好等特点而得到广泛应用.激光加工是激光应用最有发展前途的领域之一,现在已开发出20多种激光加工技术。
激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。
热加工和冷加工均可应用在金属和非金属材料,进行切割,打孔,刻槽,标记等。热加工金属材料主要包括焊接、表面处理、生产合金、切割均极有利;冷加工则对光化学沉积、激光快速成形技术、激光刻蚀、掺杂和氧化都很合适。
激光(相变)淬火和激光熔敷:
激光(相变)淬火技术是利用聚焦后的激光束入射到钢铁材料表面,使其温度迅速升高到相变点以上,当激光移开后,由于仍处于低温的内层材料的快速导热作用,使受热表层快速冷却到马氏体相变点以下,进而实现工件的表面相变硬化。激光淬火原理与感应淬火、火焰淬火技术相同。但是其技术特点是,所使用的能量密度更高,加热速度更快,不需要淬火介质,工件变形小,加热层深度和加热轨迹易于控制,易于实现自动化,因此可以在很多工业领域中逐步取代感应淬火和化学热处理等传统工艺。激光淬火可以使工件表层0.1~
激光熔敷则是采用激光熔融金属表面上的粉末,激光束移开后,熔融的金属直接从液态淬硬为固态,形成表面硬化层的工艺。由于激光熔敷允许金属表面熔化,实际操作时可以使用比激光淬火更加高的功率密度和更加慢的扫描速度,因此激光熔敷层深度比前者更深。
激光快速成形:
用激光制造模型时用的材料是液态光敏树脂,它在吸收了紫外波段的激光能量后便发生凝固, 变化成固体材料。把要制造的模型编成程序, 输入到计算机。激光器输出来的激光束由计算机控制光路系统,使它在模型材料上扫描刻划,在激光束所到之处,原先是液态的材料凝固起来。激光束在计算机的指挥下作完扫描刻划,将光敏聚合材料逐层固化,精确堆积成样件,造出模型。所以, 用这个办法制造模型,速度快, 造出来的模型又精致。该技术已在航空航天、电子、汽车等工业领域得到广泛应用。
激光切割:
激光切割技术广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量。脉冲激光适用于金属材料,连续激光适用于非金属材料,后者是激光切割技术的重要应用领域。但激光在工业领域中的应用是有局限和缺点的,比如用激光来切割食物和胶合板就不成功,食物被切开的同时也被灼烧了,而切割胶合板在经济上还远不划算。
激光焊接:
激光束照射在材料上, 会把它加热至融熔, 使对接在一起的组件接合在一起,即是焊接。激光焊接,用比切割金属时功率较小的激光束,使材料熔化而不使其气化,在冷却后成为一块连续的固体结构。激光焊接技术具有溶池净化效应,能纯净焊缝金属,适用于相同和不同金属材料间的焊接。由于激光能量密度高,对高熔点、高反射率、高导热率和物理特性相差很大的金属焊接特别有利。因为用激光焊接是不需要任何焊料的,所以排除了焊接组件受污染的可能; 其次, 激光束可被光学系统聚成直径很细的光束, 换言之, 激光可以作成非常精细的 "焊枪", 做精密焊接工作;还有激光焊接与组件不会直接接触,亦即这是非接触式的焊接, 因而材料质地脆弱也不打紧, 还可以对远离我们身边的组件作焊接, 也可以把放置在真空室内的组件焊接起来。因为激光焊接有这些特点, 所以它在微电子工业中尤其受欢迎。
激光雕刻:
用激光雕刻刀作雕刻, 比用普通雕刻刀更方便, 更迅速。用普通雕刻刀在坚硬的材料上,比如在花冈岩、钢板上作雕刻, 或者是在一些比较柔软的材料, 比如皮革上作雕刻, 就比较吃力, 刻一幅图案要花比较长的时间。如果使用激光雕刻则不同, 因为它是利用高能量密度的激光对工件进行局部照射,使表层材料气化或发生颜色变化的化学反应,从而留下永久性标记的一种雕刻方法。它根本就没有和材料接触,材料硬或者柔软, 并不妨碍 "雕刻" 的速度。所以激光雕刻技术是激光加工最大的应用领域之一。用这种雕刻刀作雕刻不管在坚硬的材料, 或者是在柔软的材料上雕刻, 刻划的速度一样。倘若与计算机相配合, 控制激光束移动, 雕刻工作还可以自动化。把要雕刻的图案放在光电扫描仪上,扫描仪输出的讯号经过计算机处理后, 用来控制激光束的动作, 就可以自动地在木板上、 玻璃上、皮革上按照我们的图样雕刻出来。同时, 聚焦起来的激光束很细, 相当于非常灵巧的雕刻刀,雕刻的线条细, 图案上的细节也能够给雕刻出来。激光雕刻可以打出各种文字、符号和图案等,字符大小可以从毫米到微米量级,这对产品的防伪有特殊的意义。激光雕刻是近年已发展至可实现亚微米雕刻,已广泛用于微电子工业和生物工程。
激光打孔:
在组件上开个小孔是件很常见的事。但是, 如果要求在坚硬的材料上,例如在硬质合金上打大量0.1毫米到几微米直径的小孔。用普通的机械加工工具恐怕是不容易办到, 即使能够做到, 加工成本也会很高。激光有很好的同调性, 用光学系统可以把它聚焦成直径很微少的光点(小于一微米),这相当于用来钻孔的 "微型钻头"。其次, 激光的亮度很高,在聚焦的焦点上的激光能量密度(平均每平方米面积上的能量)会很高,普通一台激光器输出的激光, 产生的能量就可以高达109 焦耳/厘米2, 足以让材料熔化并气化, 在材料上留下一个小孔,就像是钻头钻出来的。但是,激光钻出的孔是圆锥形的,而不是机械钻孔的圆柱形,这在有些地方是很不方便的。
激光蚀刻:
激光蚀刻技术比传统的化学蚀刻技术工艺简单、可大幅度降低生产成本,可加工0.125~1微米宽的线,非常适合于超大规模集成电路的制造。
激光手术:
激光能产生高能量﹑聚焦精确的单色光,具有一定的穿透力,作用于人体组织时能在局部产生高热量。激光手术就是利用激光的这一特点,去除或破坏目标组织,达到治疗的目的。主要包括激光切割和激光换肤以及激光治疗近视等。
激光武器:
激光武器有它的独特性,令它被广泛应用于防空、反坦克、轰炸机自卫等军事用途.激光之所以能成为威力强大的武器,是因为它有三个层次的破坏能力:
1.烧蚀效应: 跟激光热加工原理一样,当高能激光束射到目标时,激光的能量会被目标的材料吸收,转化为热能.这些热能足以令目标部分或完全穿孔,断裂、熔化、蒸发,甚至产生爆炸.
2.激波效应: 如目标材料被气化,目标材料会在极短时间内产生反冲作用,形成压缩波使材料表面层裂碎开,碎片向外飞时造成进一步破坏.
3.辐射效应:目标材料气化的同时会形成等离子体云,能产生辐射紫外线及X光线,使目标内部的电子零件被破坏。
激光能源:
激光还可应用于核能发电上。世界上现在建成的核发电站使用的核燃料是铀, 使用氚核燃料的研究尚未成功。从研究所得, 氚核燃料比铀核燃料更加 "耐烧",
本实验室可以开展的激光加工实验主要有:激光打孔、激光焊接、激光熔敷与激光切割等。
|手机版|搜索|焦点光学|光电工程师社区
( 鄂ICP备17021725号-1 鄂网安备42011102000821号 )
Copyright 2015 光电工程师社区 版权所有 All Rights Reserved.
申明:本站为非盈利性公益个人网站,已关闭注册功能,本站所有内容均为网络收集整理,不代表本站立场。如您对某些内容有质疑或不快,请及时联系我们处理!
© 2001-2022 光电工程师社区 网站备案号:鄂ICP备17021725号 网站公安备案号:鄂42011102000821号 Powered by Discuz! X3.2
GMT+8, 2025-12-25 01:58